A Learning Algorithm of Fuzzy Neural Networks with Fuzzy Weights
نویسندگان
چکیده
منابع مشابه
A Reinforcement Learning Algorithm with Evolving Fuzzy Neural Networks
The synergy of the two paradigms, neural network and fuzzy inference system, has given rise to rapidly emerging filed, neuro-fuzzy systems. Evolving neuro-fuzzy systems are intended to use online learning to extract knowledge from data and perform a high-level adaptation of the network structure. We explore the potential of evolving neuro-fuzzy systems in reinforcement learning (RL) application...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملLearning in Fuzzy Neural Networks
In our fuzzy neural networks fuzzy weights and fuzzy operations are used for training crisp and fuzzy data. Theoretical studies of fuzzy networks where triangular fuzzy numbers are used, show that the output behaviour of these networks can be estimated for arbitrary input data. To make use of these properties we present two learning algorithms for our networks. We implemented and tested them an...
متن کاملA constructive algorithm for fuzzy neural networks
We propose a constructive method, inspired by Simpson’s Min-Max technique, for obtaining fuzzy neural networks. It adopts a cost function depending on a unique net parameter. This feature allows us to apply a simple unimodal search for determining this parameter and hence the architecture of the optimal net. The algorithm shows a good behavior with respect to other methods when applied to real ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Institute of Systems, Control and Information Engineers
سال: 1993
ISSN: 1342-5668,2185-811X
DOI: 10.5687/iscie.6.579